Fixed second derivative bug! Looks good now; breaking up Update function for better encapsulation during collision detection.
This commit is contained in:
parent
45b919c3ff
commit
64ffc31229
|
@ -1,9 +1,6 @@
|
|||
local function DetectCollision(
|
||||
xi, yi, vx, vy, xf, yf,
|
||||
GetRadius,
|
||||
GetRadialDerivative)
|
||||
|
||||
|
||||
local function DetectCollision( curMarble, newMarble, curWave, newWave )
|
||||
local t, r, th, normal
|
||||
if t then return { t = t, r = r, th = th, normal = normal } end
|
||||
end
|
||||
|
||||
return DetectCollision
|
20
main.lua
20
main.lua
|
@ -1,10 +1,10 @@
|
|||
local love = love
|
||||
step = 1.0 / 120.0
|
||||
local step = step
|
||||
local step = 1.0 / 120.0
|
||||
local sitelenpona
|
||||
local text
|
||||
local marble
|
||||
local wave
|
||||
local DetectCollision
|
||||
|
||||
local sounds = {
|
||||
|
||||
|
@ -76,6 +76,7 @@ function love.load()
|
|||
text = assert( require "text" )
|
||||
marble = assert( require "marble" )
|
||||
wave = assert( require "wave" )
|
||||
DetectCollision = assert ( require "collision" )
|
||||
return state.Reset()
|
||||
|
||||
end
|
||||
|
@ -129,22 +130,26 @@ local function OnImpact( impact )
|
|||
local score = BeatScore( impact.t )
|
||||
--DEBUG
|
||||
state.lastBeatScore = score
|
||||
|
||||
local sound
|
||||
if score > state.beatScoreThreshold then
|
||||
sound = sounds.goodPing
|
||||
|
||||
state.beatScoreThreshold = 1.0
|
||||
state.currentBeat = state.currentBeat + 1
|
||||
if state.currentBeat >= 120 then
|
||||
return OnVictory()
|
||||
end
|
||||
love.audio.play(sounds.goodPing)
|
||||
|
||||
|
||||
else
|
||||
|
||||
sound = sounds.badPing
|
||||
state.beatScoreThreshold = state.beatScoreThreshold - 0.05
|
||||
love.audio.play(sounds.badPing)
|
||||
|
||||
end
|
||||
|
||||
|
||||
love.audio.play( sound )
|
||||
end
|
||||
|
||||
|
||||
|
@ -177,8 +182,9 @@ end
|
|||
function love.update( dt )
|
||||
dt = dt + state.timeToSimulate
|
||||
while dt > step do
|
||||
marble.Update()
|
||||
wave.Update()
|
||||
marble.Integrate( step )
|
||||
wave.Integrate( step )
|
||||
|
||||
dt = dt - step
|
||||
end
|
||||
state.timeToSimulate = dt
|
||||
|
|
11
marble.lua
11
marble.lua
|
@ -3,14 +3,21 @@ local love = love
|
|||
--local wave = assert( require "wave" )
|
||||
local oldBuffer = love.graphics.newCanvas()
|
||||
local newBuffer = love.graphics.newCanvas()
|
||||
local step = assert( step )
|
||||
local state
|
||||
local FRICTION = 0.01
|
||||
local MAXSPEED = 5.0
|
||||
|
||||
local t, x, y, dx, dy, ddx, ddy
|
||||
|
||||
local function OnImpact( impact )
|
||||
|
||||
end
|
||||
|
||||
local function Update()
|
||||
|
||||
end
|
||||
|
||||
local function Integrate( step )
|
||||
t = love.timer.getTime()
|
||||
|
||||
dx = (1.0 - FRICTION) * dx + FRICTION * ddx
|
||||
|
@ -95,6 +102,8 @@ end
|
|||
Reset()
|
||||
|
||||
return {
|
||||
Integrate = Integrate,
|
||||
OnImpact = OnImpact,
|
||||
Update = Update,
|
||||
OnKey = OnKey,
|
||||
Draw = Draw,
|
||||
|
|
57
wave.lua
57
wave.lua
|
@ -1,8 +1,7 @@
|
|||
--Render and simulate 1D wave equation.
|
||||
local love = love
|
||||
local step = assert( step )
|
||||
|
||||
local N = 25
|
||||
local N = 11
|
||||
|
||||
--Calculate discrete fourier transform of radius function.
|
||||
local DFT
|
||||
|
@ -80,11 +79,11 @@ local SecondDerivative = function( wave, x )
|
|||
local y = 0
|
||||
|
||||
for k = 1, N / 2 do
|
||||
local c, s = k * k * math.cos( x * k ), k * k * math.sin( x * k )
|
||||
local c, s = -k * k * math.cos( x * k ), -k * k * math.sin( x * k )
|
||||
y = y
|
||||
- c * re[k + 1]
|
||||
+ c * re[k + 1]
|
||||
- s * im[k + 1]
|
||||
- c * re[N - k + 1]
|
||||
+ c * re[N - k + 1]
|
||||
+ s * im[N - k + 1]
|
||||
|
||||
end
|
||||
|
@ -119,7 +118,7 @@ local mt = { __index = {
|
|||
|
||||
local function Wave( )
|
||||
local t = {
|
||||
--radii[k] = radius of point on curve at angle (k - 1) / 13
|
||||
--radii[k] = radius of point on curve at angle (k - 1) / N
|
||||
radii = {},
|
||||
--TIME derivative of radius
|
||||
vrad = {},
|
||||
|
@ -130,7 +129,7 @@ local function Wave( )
|
|||
}
|
||||
|
||||
for i = 1, N do
|
||||
t.radii[i] = 1.0
|
||||
t.radii[i] = 0.3 * math.sin( i * 2.0 * math.pi / N )
|
||||
t.vrad[i] = 0.0
|
||||
end
|
||||
DFT( t )
|
||||
|
@ -162,23 +161,27 @@ local function Draw()
|
|||
|
||||
for k = 0.1, 1.0, 0.1 do
|
||||
--Interpolant.
|
||||
love.graphics.setColor( 1.0, 0, 0, 0.5 )
|
||||
love.graphics.setColor( 1.0, 0, 0, 0.7 )
|
||||
th = ( i - 1 + k ) * 2.0 * math.pi / N
|
||||
r = cur:Interpolate( th )
|
||||
x, y = r * math.cos( th ), r * math.sin( th )
|
||||
love.graphics.circle( "fill", x, y, 0.01 )
|
||||
local r = cur:Interpolate( th )
|
||||
local x, y = r * math.cos( th ), r * math.sin( th )
|
||||
--love.graphics.circle( "fill", x, y, 0.01 )
|
||||
love.graphics.circle( "fill", th / math.pi - 1.0 , r, 0.01)
|
||||
|
||||
--First derivative.
|
||||
love.graphics.setColor( 0, 1.0, 0, 0.5 )
|
||||
r = 1.0 + cur:Derivative( th )
|
||||
love.graphics.setColor( 0, 1.0, 0, 0.7 )
|
||||
r = cur:Derivative( th )
|
||||
x, y = r * math.cos( th ), r * math.sin( th )
|
||||
love.graphics.circle( "fill", x, y, 0.01 )
|
||||
--love.graphics.circle( "fill", x, y, 0.01 )
|
||||
love.graphics.circle( "fill", th / math.pi - 1.0, r, 0.01)
|
||||
|
||||
--Second derivative.
|
||||
love.graphics.setColor( 0, 0, 1.0, 0.5 )
|
||||
r = 1.0 + cur:SecondDerivative( th )
|
||||
love.graphics.setColor( 0, 0, 1.0, 0.7 )
|
||||
r = cur:SecondDerivative( th )
|
||||
x, y = r * math.cos( th ), r * math.sin( th )
|
||||
love.graphics.circle( "fill", x, y, 0.01 )
|
||||
--love.graphics.circle( "fill", x, y, 0.01 )
|
||||
love.graphics.circle( "fill", th / math.pi - 1.0, r, 0.01)
|
||||
|
||||
end
|
||||
end
|
||||
|
||||
|
@ -188,23 +191,25 @@ local function Draw()
|
|||
love.graphics.circle( "fill", x, y, 0.02 )
|
||||
end
|
||||
|
||||
local function OnImpact( impact )
|
||||
|
||||
end
|
||||
|
||||
local function Update()
|
||||
|
||||
end
|
||||
|
||||
local function Integrate( step )
|
||||
local t = love.timer.getTime()
|
||||
for i = 1, N do
|
||||
local rxx = old:SecondDerivative( 2.0 * math.pi * (i - 1) / N )
|
||||
cur.vrad[i] = 0.7 * old.vrad[i] + 0.5 * step * rxx
|
||||
cur.radii[i] = old.radii[i] + step * cur.vrad[i]
|
||||
cur.radii[i] = old.radii[i]
|
||||
end
|
||||
|
||||
cur:DFT( )
|
||||
|
||||
if love.math.random( 120 ) < 3 then
|
||||
cur:Impulse( 0, 0.2 )
|
||||
end
|
||||
|
||||
--Deep copy of current state to old state.
|
||||
for name, t in pairs( cur ) do
|
||||
for i = 1, 13 do
|
||||
for i = 1, N do
|
||||
old[name][i] = t[i]
|
||||
end
|
||||
end
|
||||
|
@ -225,6 +230,8 @@ Reset()
|
|||
return {
|
||||
Reset = Reset,
|
||||
Update = Update,
|
||||
Integrate = Integrate,
|
||||
OnImpact = OnImpact,
|
||||
DetectCollision = DetectCollision,
|
||||
Draw = Draw,
|
||||
}
|
Loading…
Reference in New Issue