323 lines
7.3 KiB
Lua
323 lines
7.3 KiB
Lua
--Render and simulate 1D wave equation.
|
|
local love = love
|
|
local N = 33
|
|
local SOUNDSPEED
|
|
local IMPULSESIZE
|
|
local DAMPING
|
|
|
|
|
|
local old, cur, new --States add beginning of last tick, current tick, and next tick respectively.
|
|
|
|
local function Current() return cur end
|
|
local function Next() return new end
|
|
local Integrate
|
|
local Interpolate
|
|
local Derivative
|
|
local SecondDerivative
|
|
local DFT
|
|
|
|
local shader = love.graphics.newShader([[
|
|
|
|
uniform float re[33];
|
|
uniform float im[33];
|
|
uniform float score;
|
|
|
|
//Slow IDFT
|
|
float r( float x )
|
|
{
|
|
float r = re[0];
|
|
|
|
for( int k = 1; k < 17; k++ )
|
|
{
|
|
float c = cos( x * float( k ) );
|
|
float s = sin( x * float( k ) );
|
|
r +=
|
|
+ c * re[k]
|
|
- s * im[k]
|
|
+ c * re[33 - k]
|
|
+ s * im[33 - k];
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
vec4 effect(vec4 color, Image tex, vec2 texture_coords, vec2 screen_coords)
|
|
{
|
|
vec2 p = (3.0 * screen_coords - 1.5 * love_ScreenSize.xy ) / love_ScreenSize.y;
|
|
p.y = -p.y;
|
|
|
|
float r = r( atan(p.y, p.x) ) - length( p );
|
|
float q = float( r < 0.05 ) * clamp( 1.0 - score, 0.0, 1.0 ) ;
|
|
|
|
return vec4( q + (1.0 + clamp( score, 0.0, 1.0 ) * r * r * 0.3) * color.xyz, float(r > 0.0) ) ;
|
|
}
|
|
]])
|
|
|
|
|
|
--Calculate discrete fourier transform of radius function.
|
|
do
|
|
local twiddlec = {}
|
|
local twiddles = {}
|
|
for i = 1, N do
|
|
twiddlec[i], twiddles[i] = math.cos( - 2.0 * ( i - 1 ) * math.pi / N ), math.sin( - 2.0 * (i - 1) * math.pi / N )
|
|
end
|
|
|
|
local function Twiddle( j )
|
|
j = 1 + j % N
|
|
return twiddlec[j], twiddles[j]
|
|
end
|
|
|
|
--Slow Discrete Fourier Transform of a real sequence.
|
|
DFT = function( wave )
|
|
local seq = wave.radii
|
|
local dre, dim = wave.dftre, wave.dftim
|
|
for k = 0, N - 1 do
|
|
|
|
local x, y = 0, 0 --Fourier coefficients in bin k.
|
|
|
|
for n = 0, N - 1 do
|
|
local cos, sin = Twiddle( n * k )
|
|
x = x + seq[n + 1] * cos
|
|
y = y + seq[n + 1] * sin
|
|
end
|
|
|
|
dre[k + 1], dim[k + 1] = x / N , y / N
|
|
end
|
|
end
|
|
|
|
end
|
|
|
|
--Minimal-oscillation interpolant of a real function from its discrete Fourier coefficients.
|
|
Interpolate = function( wave, x )
|
|
local re, im = wave.dftre, wave.dftim
|
|
local y = re[1]
|
|
|
|
for k = 1, N / 2 do
|
|
local c, s = math.cos( x * k ), math.sin( x * k )
|
|
y = y
|
|
+ c * re[k + 1]
|
|
- s * im[k + 1]
|
|
+ c * re[N - k + 1]
|
|
+ s * im[N - k + 1]
|
|
|
|
end
|
|
|
|
return y
|
|
end
|
|
|
|
--Derivative of the interpolation.
|
|
Derivative = function( wave, x )
|
|
local re, im = wave.dftre, wave.dftim
|
|
local y = 0
|
|
|
|
for k = 1, N / 2 do
|
|
local c, s = k * math.cos( x * k ), k * math.sin( x * k )
|
|
y = y
|
|
- c * im[k + 1]
|
|
- s * re[k + 1]
|
|
+ c * im[N - k + 1]
|
|
- s * re[N - k + 1]
|
|
|
|
end
|
|
|
|
return y
|
|
end
|
|
|
|
--Second derivative of the interpolation.
|
|
SecondDerivative = function( wave, x )
|
|
local re, im = wave.dftre, wave.dftim
|
|
local y = 0
|
|
|
|
for k = 1, N / 2 do
|
|
local c, s = -k * k * math.cos( x * k ), -k * k * math.sin( x * k )
|
|
y = y
|
|
+ c * re[k + 1]
|
|
- s * im[k + 1]
|
|
+ c * re[N - k + 1]
|
|
+ s * im[N - k + 1]
|
|
|
|
end
|
|
return y
|
|
end
|
|
|
|
--Bandlimited impulse located at angle theta.
|
|
local function AliasedSinc( theta, x )
|
|
local n, d = math.sin( N * 0.5 * ( x - theta ) ), N * math.sin( 0.5 * ( x - theta ) )
|
|
if d < 0.0001 and d > -0.0001 then return 1.0 end
|
|
return n / d
|
|
end
|
|
|
|
--Apply bandlimited impulse to wave, adjust free parameters according to game state.
|
|
local function OnImpact( impact, level )
|
|
|
|
IMPULSESIZE = 10.0 * ( level - 2.0) / 120.0
|
|
SOUNDSPEED = 25 - 10 * level / 120
|
|
DAMPING = 0.01 * ( 1.0 - 0.4 * level / 120 )
|
|
|
|
|
|
--Apply bandlimited impulse.
|
|
local r = cur.radii
|
|
local theta = impact.th
|
|
local magnitude = IMPULSESIZE * impact.speed
|
|
local dt = 1.0 / 120.0
|
|
for i = 0, N - 1 do
|
|
r[ i + 1 ] = r[ i + 1 ] + dt * magnitude * AliasedSinc( theta, 2.0 * math.pi * i / N )
|
|
end
|
|
|
|
--We've updated the positions, now we need to take a DFT
|
|
--in order to get the bandlimited second spatial derivative.
|
|
cur:DFT()
|
|
return Integrate( dt )
|
|
end
|
|
|
|
local mt = { __index = {
|
|
DFT = DFT,
|
|
Interpolate = Interpolate,
|
|
Derivative = Derivative,
|
|
SecondDerivative = SecondDerivative,
|
|
Impulse = Impulse } }
|
|
|
|
|
|
|
|
local function Wave( )
|
|
local t = {
|
|
--radii[k] = radius of point on curve at angle (k - 1) / N
|
|
radii = {},
|
|
|
|
--SPACE DFT of radius function (which is periodic)
|
|
dftre = {},
|
|
dftim = {},
|
|
}
|
|
|
|
for i = 1, N do
|
|
t.radii[i] = 1.0
|
|
end
|
|
DFT( t )
|
|
|
|
return setmetatable(t, mt)
|
|
end
|
|
|
|
local function Draw( score )
|
|
|
|
-- Blue circle.
|
|
love.graphics.setColor( 91 / 255, 206 / 255, 250 / 255 )
|
|
|
|
shader:send( "re", unpack( cur.dftre ) )
|
|
shader:send( "im", unpack( cur.dftim ) )
|
|
shader:send( "score", score )
|
|
love.graphics.setShader( shader )
|
|
love.graphics.circle("fill", 0, 0, 1.5)
|
|
local t = love.timer.getTime()
|
|
love.graphics.setShader( )
|
|
|
|
-- Debug dots.
|
|
--[[
|
|
for i = 1, N do
|
|
|
|
local th = ( i - 1 ) * 2.0 * math.pi / N
|
|
local cx, cy = cur.radii[i] * math.cos( th ), cur.radii[i] * math.sin( th )
|
|
love.graphics.setCanvas()
|
|
love.graphics.setColor( 0, 0, 0, 0.5 )
|
|
love.graphics.circle( "fill", cx, cy, 0.02 )
|
|
|
|
|
|
|
|
for k = 0.1, 1.0, 0.1 do
|
|
--Interpolant.
|
|
love.graphics.setColor( 1.0, 0, 0, 0.7 )
|
|
th = ( i - 1 + k ) * 2.0 * math.pi / N
|
|
local r = cur:Interpolate( th )
|
|
local x, y = r * math.cos( th ), r * math.sin( th )
|
|
love.graphics.circle( "fill", x, y, 0.01 )
|
|
--love.graphics.circle( "fill", th / math.pi - 1.0 , r, 0.01)
|
|
|
|
--First derivative.
|
|
--love.graphics.setColor( 0, 1.0, 0, 0.7 )
|
|
r = cur:Derivative( th )
|
|
x, y = r * math.cos( th ), r * math.sin( th )
|
|
--love.graphics.circle( "fill", x, y, 0.01 )
|
|
love.graphics.circle( "fill", th / math.pi - 1.0, r, 0.01)
|
|
|
|
--Second derivative.
|
|
love.graphics.setColor( 0, 0, 1.0, 0.7 )
|
|
r = cur:SecondDerivative( th )
|
|
x, y = r * math.cos( th ), r * math.sin( th )
|
|
--love.graphics.circle( "fill", x, y, 0.01 )
|
|
love.graphics.circle( "fill", th / math.pi - 1.0, r, 0.01)
|
|
|
|
love.graphics.setColor( 1.0, 1.0, 1.0, 0.2 )
|
|
love.graphics.circle( "fill", 2.0 * ( i + k ) / N - 1.2, 0, 0.02 )
|
|
|
|
end
|
|
end
|
|
|
|
love.graphics.setColor( 1, 1, 1, 0.5 )
|
|
local r = cur:Interpolate( t )
|
|
local x, y = r * math.cos( t ), r * math.sin( t )
|
|
love.graphics.circle( "fill", x, y, 0.02 )]]
|
|
|
|
end
|
|
|
|
|
|
local function Update( )
|
|
|
|
--Deep copy of current state to old state.
|
|
for name, t in pairs( cur ) do
|
|
for i = 1, N do
|
|
old[name][i] = t[i]
|
|
end
|
|
end
|
|
|
|
--Deep copy of new state to current state.
|
|
for name, t in pairs( new ) do
|
|
for i = 1, N do
|
|
cur[name][i] = t[i]
|
|
end
|
|
end
|
|
end
|
|
|
|
Integrate = function( step )
|
|
|
|
for i = 1, N do
|
|
|
|
local rxx = cur:SecondDerivative( math.pi * 2.0 * ( i - 1 ) / N )
|
|
|
|
local r = ( 1.0 - DAMPING ) * ( 2.0 * cur.radii[i] - old.radii[i] + step * step * SOUNDSPEED * rxx ) --Verlet
|
|
+ DAMPING --Damping: oscillate toward 1.
|
|
|
|
--Avoid explosions.
|
|
r = math.max( 0.5, math.min( r, 4.0 ) )
|
|
new.radii[i] = r
|
|
end
|
|
|
|
new:DFT( )
|
|
|
|
end
|
|
|
|
local function DetectCollision( px, py, vpx, vpy )
|
|
local xi, xf = px + vpx * step, py + vpy * step
|
|
end
|
|
|
|
local function Reset()
|
|
|
|
IMPULSESIZE = 1 / 10.0
|
|
SOUNDSPEED = 5.0
|
|
DAMPING = 0.1 / 1
|
|
|
|
old = Wave()
|
|
cur = Wave()
|
|
new = Wave()
|
|
end
|
|
|
|
Reset()
|
|
|
|
return {
|
|
Reset = Reset,
|
|
Update = Update,
|
|
Integrate = Integrate,
|
|
OnImpact = OnImpact,
|
|
DetectCollision = DetectCollision,
|
|
Draw = Draw,
|
|
Current = Current,
|
|
Next = Next,
|
|
} |