190 lines
4.0 KiB
Lua
190 lines
4.0 KiB
Lua
|
--Render and simulate 1D wave equation.
|
||
|
local love = love
|
||
|
local step = assert( step )
|
||
|
|
||
|
local N = 25
|
||
|
|
||
|
--Calculate discrete fourier transform of radius function.
|
||
|
local DFT
|
||
|
do
|
||
|
local twiddlec = {}
|
||
|
local twiddles = {}
|
||
|
for i = 1, N do
|
||
|
twiddlec[i], twiddles[i] = math.cos( - 2.0 * ( i - 1 ) * math.pi / N ), math.sin( - 2.0 * (i - 1) * math.pi / N )
|
||
|
end
|
||
|
|
||
|
local function Twiddle( j )
|
||
|
j = 1 + j % N
|
||
|
return twiddlec[j], twiddles[j]
|
||
|
end
|
||
|
|
||
|
--Slow Discrete Fourier Transform of a real sequence.
|
||
|
DFT = function( wave )
|
||
|
local seq = wave.radii
|
||
|
local dre, dim = wave.dftre, wave.dftim
|
||
|
for k = 0, N - 1 do
|
||
|
|
||
|
local x, y = 0, 0 --Fourier coefficients in bin k.
|
||
|
|
||
|
for n = 0, N - 1 do
|
||
|
local cos, sin = Twiddle( n * k )
|
||
|
x = x + seq[n + 1] * cos
|
||
|
y = y + seq[n + 1] * sin
|
||
|
end
|
||
|
|
||
|
dre[k + 1], dim[k + 1] = x / N , y / N
|
||
|
end
|
||
|
end
|
||
|
|
||
|
end
|
||
|
|
||
|
--Minimal-oscillation interpolant of a real function from its discrete Fourier coefficients.
|
||
|
local Interpolate = function( wave, x )
|
||
|
local re, im = wave.dftre, wave.dftim
|
||
|
local y = re[1]
|
||
|
|
||
|
for k = 1, N / 2 do
|
||
|
local c, s = math.cos( x * k ), math.sin( x * k )
|
||
|
y = y
|
||
|
+ c * re[k + 1]
|
||
|
- s * im[k + 1]
|
||
|
+ c * re[N - k + 1]
|
||
|
+ s * im[N - k + 1]
|
||
|
|
||
|
end
|
||
|
|
||
|
return y
|
||
|
end
|
||
|
|
||
|
--Derivative of the interpolation.
|
||
|
local Derivative = function( wave, x )
|
||
|
local re, im = wave.dftre, wave.dftim
|
||
|
|
||
|
for k = 1, N / 2 do
|
||
|
local c, s = k * math.cos( x * k ), k * math.sin( x * k )
|
||
|
y = y
|
||
|
- c * im[k + 1]
|
||
|
- s * re[k + 1]
|
||
|
+ c * im[N - k + 1]
|
||
|
- s * re[N - k + 1]
|
||
|
|
||
|
end
|
||
|
|
||
|
return y
|
||
|
end
|
||
|
|
||
|
--Second derivative of the interpolation.
|
||
|
local SecondDerivative = function( wave, x )
|
||
|
local re, im = wave.dftre, wave.dftim
|
||
|
|
||
|
for k = 1, N / 2 do
|
||
|
local c, s = k * k * math.cos( x * k ), k * k * math.sin( x * k )
|
||
|
y = y
|
||
|
- c * re[k + 1]
|
||
|
+ s * im[k + 1]
|
||
|
- c * re[N - k + 1]
|
||
|
- s * im[N - k + 1]
|
||
|
|
||
|
end
|
||
|
|
||
|
return y
|
||
|
end
|
||
|
|
||
|
local mt = { __index = {
|
||
|
DFT = DFT,
|
||
|
Interpolate = Interpolate,
|
||
|
Derivative = Derivative,
|
||
|
SecondDerivative = SecondDerivative } }
|
||
|
|
||
|
local function Wave( )
|
||
|
local t = {
|
||
|
--radii[k] = radius of point on curve at angle (k - 1) / 13
|
||
|
radii = {},
|
||
|
--TIME derivative of radius
|
||
|
vrad = {},
|
||
|
|
||
|
--SPACE DFT of radius function (which is periodic)
|
||
|
dftre = {},
|
||
|
dftim = {},
|
||
|
}
|
||
|
|
||
|
for i = 1, N do
|
||
|
t.radii[i] = 1.0
|
||
|
t.vrad[i] = 0.0
|
||
|
end
|
||
|
DFT( t )
|
||
|
|
||
|
return setmetatable(t, mt)
|
||
|
end
|
||
|
|
||
|
|
||
|
local old = Wave() --State at beginning of tick.
|
||
|
local cur = Wave() --State at end of tick.
|
||
|
|
||
|
|
||
|
local function Draw()
|
||
|
|
||
|
-- Blue circle.
|
||
|
love.graphics.setColor( 91 / 255, 206 / 255, 250 / 255 )
|
||
|
love.graphics.circle("fill", 0, 0, 1)
|
||
|
local t = love.timer.getTime()
|
||
|
|
||
|
-- Debug dots.
|
||
|
for i = 1, N do
|
||
|
|
||
|
local th = ( i - 1 ) * 2.0 * math.pi / N
|
||
|
local cx, cy = cur.radii[i] * math.cos( th ), cur.radii[i] * math.sin( th )
|
||
|
love.graphics.setCanvas()
|
||
|
love.graphics.setColor( 0, 0, 0, 0.5 )
|
||
|
love.graphics.circle( "fill", cx, cy, 0.02 )
|
||
|
|
||
|
love.graphics.setColor( 1.0, 0, 0, 0.5 )
|
||
|
for k = 0.1, 1.0, 0.1 do
|
||
|
th = ( i - 1 + k ) * 2.0 * math.pi / N
|
||
|
r = cur:Interpolate( th )
|
||
|
x, y = r * math.cos( th ), r * math.sin( th )
|
||
|
love.graphics.circle( "fill", x, y, 0.01 )
|
||
|
end
|
||
|
end
|
||
|
|
||
|
love.graphics.setColor( 1, 1, 1, 0.5 )
|
||
|
local r = cur:Interpolate( t )
|
||
|
local x, y = r * math.cos( t ), r * math.sin( t )
|
||
|
love.graphics.circle( "fill", x, y, 0.02 )
|
||
|
end
|
||
|
|
||
|
local function Update()
|
||
|
--Deep copy of current state to old state.
|
||
|
for name, t in pairs( cur ) do
|
||
|
for i = 1, 13 do
|
||
|
old[name][i] = t[i]
|
||
|
end
|
||
|
end
|
||
|
|
||
|
local t = love.timer.getTime()
|
||
|
for i = 1, N do
|
||
|
cur.radii[i] = cur.radii[i] + old.vrad[i] * step
|
||
|
cur.vrad[i] = cur.vrad[i] - cur:SecondDerivative( ( i - 1 ) / N )
|
||
|
end
|
||
|
|
||
|
cur:DFT( )
|
||
|
|
||
|
end
|
||
|
|
||
|
local function DetectCollision( px, py, vpx, vpy )
|
||
|
local xi, xf = px + vpx * step, py + vpy * step
|
||
|
end
|
||
|
|
||
|
local function Reset()
|
||
|
old = Wave()
|
||
|
cur = Wave()
|
||
|
end
|
||
|
|
||
|
Reset()
|
||
|
|
||
|
return {
|
||
|
Reset = Reset,
|
||
|
Update = Update,
|
||
|
DetectCollision = DetectCollision,
|
||
|
Draw = Draw,
|
||
|
}
|