2023-10-07 14:52:55 +00:00
|
|
|
local enum = require 'enumeration'
|
2023-10-07 19:38:00 +00:00
|
|
|
local ffi = require 'ffi'
|
|
|
|
|
|
|
|
local function NadFFI( p )
|
|
|
|
local rmt = {
|
|
|
|
__lt = function(a, b) return a.n / a.d < b.n / b.d end,
|
|
|
|
__eq = function(a, b) return a.n == b.n and a.d == b.d end,
|
|
|
|
__call = function(t) return t.n / t.d end,
|
|
|
|
__tostring = function(t) return string.format( "<%d/%d>", t.n, t.d ) end
|
|
|
|
}
|
|
|
|
ffi.cdef "typedef struct { uint32_t n, d; } rational;"
|
|
|
|
ffi.metatype( "rational", rmt )
|
|
|
|
local list = ffi.new( "rational[?]", 123456 )
|
|
|
|
local d, i = 1, 1
|
|
|
|
repeat
|
|
|
|
d = d * p
|
|
|
|
for n = d - 1, 1, -p do
|
|
|
|
list[i].n = n
|
|
|
|
list[i].d = d
|
|
|
|
i = i + 1
|
|
|
|
end
|
|
|
|
until i > 123456 / p
|
|
|
|
return list
|
|
|
|
end
|
2023-10-07 14:52:55 +00:00
|
|
|
|
|
|
|
local function CalkinWilf()
|
|
|
|
local n, d = 1, 1
|
|
|
|
return enum( function()
|
|
|
|
repeat n, d = d, ( 2 * d * math.floor( n / d ) - n + d )
|
|
|
|
until n < d
|
|
|
|
return n / d
|
|
|
|
end )
|
|
|
|
end
|
|
|
|
|
|
|
|
local function Random()
|
|
|
|
return enum( math.random )
|
|
|
|
end
|
|
|
|
|
|
|
|
--Breadth first traversal of the open left subtree of the Stern-Brocot tree.
|
|
|
|
--Formed by inserting the mediants of previous rationals in the tree.
|
|
|
|
local function SternBrocot()
|
|
|
|
|
|
|
|
--Rational numbers.
|
|
|
|
local R
|
|
|
|
do
|
|
|
|
local rationals = {}
|
|
|
|
local rmt = {
|
|
|
|
__lt = function(a, b) return a[1]/a[2] < b[1]/b[2] end,
|
|
|
|
__eq = function(a, b) return a[1] == b[1] and a[2] == b[2] end,
|
|
|
|
__pow = function(a, b) return R( a[1] + b[1], a[2] + b[2] ) end, --mediant
|
|
|
|
__call = function(t) return t[1]/t[2] end,
|
|
|
|
__tostring = function(t) return string.format( "%d / %d", t[1], t[2] ) end }
|
|
|
|
|
|
|
|
R = function( n, d )
|
|
|
|
if not rationals[d] then rationals[d] = {} end
|
|
|
|
local den = rationals[d]
|
|
|
|
|
|
|
|
if den[n] then return den[n] end
|
|
|
|
|
|
|
|
local r = setmetatable( { n , d }, rmt )
|
|
|
|
den[n] = r
|
|
|
|
return r
|
|
|
|
end
|
|
|
|
end
|
|
|
|
|
|
|
|
--Flat list of all entries traversed so far.
|
|
|
|
local seq = { R(0, 1), R(1, 2), R(1, 1) }
|
|
|
|
local idx = 0
|
|
|
|
local len = 3
|
|
|
|
|
|
|
|
local function nextRational()
|
|
|
|
--Return every other entry: these are the most recently added mediants.
|
|
|
|
idx = idx + 2
|
|
|
|
if idx < len then return seq[idx] end
|
|
|
|
|
|
|
|
--We have finished iterating over the current level of the tree.
|
|
|
|
--Create a new level by adding all the new mediants.
|
|
|
|
|
|
|
|
local nSeq = {}
|
|
|
|
for i = 1, len - 1 do
|
|
|
|
nSeq[ 2 * i - 1 ] = seq[i]
|
|
|
|
nSeq[ 2 * i ] = seq[i] ^ seq[i + 1]
|
|
|
|
end
|
|
|
|
nSeq[ 2 * len - 1 ] = seq[ len ]
|
|
|
|
seq = nSeq
|
|
|
|
len = #seq
|
|
|
|
--print( "RATIONALS: NEW LEVEL", len, unpack( nSeq ) )
|
|
|
|
idx = 0
|
|
|
|
return nextRational()
|
|
|
|
end
|
|
|
|
|
|
|
|
return enum( nextRational )
|
|
|
|
end
|
|
|
|
|
|
|
|
--Enumeration of dyadic rationals in the open unit interval, ascending lexicographic.
|
|
|
|
local function Dyad()
|
|
|
|
local n, d = -1, 2
|
|
|
|
return enum( function()
|
|
|
|
n = n + 2
|
|
|
|
if n > d then n, d = 1, d * 2 end
|
|
|
|
return n / d
|
|
|
|
end )
|
|
|
|
end
|
|
|
|
|
2023-10-07 19:38:00 +00:00
|
|
|
local function Nad( p )
|
|
|
|
local n, d = -1, p
|
|
|
|
return enum( function()
|
|
|
|
n = n + p
|
|
|
|
if n > d then n, d = 1, d * p end
|
|
|
|
return n / d
|
|
|
|
end )
|
|
|
|
end
|
|
|
|
|
2023-10-07 14:52:55 +00:00
|
|
|
return {
|
2023-10-07 19:38:00 +00:00
|
|
|
Dyad = Dyad,
|
|
|
|
NadFFI = NadFFI,
|
|
|
|
Nad = Nad,
|
2023-10-07 14:52:55 +00:00
|
|
|
SternBrocot = SternBrocot,
|
|
|
|
CalkinWilf = CalkinWilf,
|
|
|
|
Random = Random,
|
|
|
|
QuadIrr = false,
|
|
|
|
}
|