--Bespoke script for calculating one-parameter family of real analytic solutions --to functional equation f'( f( x ) ) = x. --Idea: suppose f has fixed point 'p', --apply the chain rule to functional equation --get values of f's derivatives at p --get truncated taylor series expansion of f at p --plot to get some idea about values, convergence. local function PlotFunction( f ) local RESOLUTION = 1000 local points = {} for n = 1, RESOLUTION do points[ 2 * n - 1 ] = n / RESOLUTION points[ 2 * n ] = f( n / RESOLUTION ) end local tf = love.math.newTransform( 0, love.graphics.getHeight(), 0, love.graphics.getWidth(), -love.graphics.getHeight()) love.graphics.setColor( 1, 1, 1, 0.5 ) love.graphics.setLineWidth( 0.003 ) love.graphics.setLineJoin( "miter" ) love.graphics.setLineStyle( "smooth" ) local draw = love.draw or function() end love.draw = function() draw() love.graphics.replaceTransform( tf ) love.graphics.line( points ) end love.update = function( dt ) print( love.mouse.getPosition( ) ) end end PlotFunction( function( x ) return x * x end ) PlotFunction( function( x ) return x * x * x end ) PlotFunction( math.sin ) PlotFunction( function( x ) return math.exp( x ) - 1 end )