Feverish insensate spurt:
- Added basic AST calculator for derivatives. - Added direct derivation via Faa Di Bruno formula. - Added ansatz method. - Factored out polynomial interpolation functionality.
This commit is contained in:
parent
099b8440e2
commit
b7a2e67ace
|
@ -0,0 +1,21 @@
|
|||
--Solve the functional equation f' o f = id by ansatz:
|
||||
--assume f(x) = ax ^ b. Then
|
||||
--f' o f (x) = ba^b * x ^ ( b ( b-1 ) )
|
||||
|
||||
local phi = 1 + math.sqrt( 5 ) / 2
|
||||
local ihp = 1 - math.sqrt( 5 ) / 2
|
||||
local function SeriesCoefficients( )
|
||||
|
||||
local a, b = math.pow( phi, ihp ), phi
|
||||
local c, d = a, b
|
||||
for i = 1, 100 do
|
||||
|
||||
--print( c, d )
|
||||
c = c * d
|
||||
d = d - 1
|
||||
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
SeriesCoefficients()
|
|
@ -0,0 +1,110 @@
|
|||
--Bespoke symbolic differentiation.
|
||||
--Little prototypes for building a syntax tree containing only
|
||||
--multiplication, addition, and composition,
|
||||
--evaluating its value, and expanding it according to the chain rule.
|
||||
|
||||
local op;
|
||||
local function d( x ) return x:diff() end
|
||||
local function D( x ) return setmetatable( { ["n"] = x }, op.atom ) end
|
||||
|
||||
local computedDerivatives = {}
|
||||
|
||||
local __call = D
|
||||
local __add = function( a, b ) return setmetatable( { a, b }, op.add ) end
|
||||
local __mul = function( a, b ) return setmetatable( { a, b }, op.mul ) end
|
||||
local __pow = function( a, b ) return setmetatable( { a, b }, op.compose ) end
|
||||
|
||||
op = {
|
||||
|
||||
atom = {
|
||||
__add = __add,
|
||||
__mul = __mul,
|
||||
__pow = __pow,
|
||||
__call = __call,
|
||||
__tostring = function( self ) return tostring( self.n ) end,
|
||||
|
||||
__index = {
|
||||
|
||||
eval = function( self )
|
||||
return computedDerivatives[ self.n ]
|
||||
end,
|
||||
|
||||
diff = function( self )
|
||||
return D( self.n + 1 )
|
||||
end,
|
||||
}},
|
||||
|
||||
compose = {
|
||||
__add = __add,
|
||||
__mul = __mul,
|
||||
__pow = __pow,
|
||||
__call = __call,
|
||||
__tostring = function( self ) return "("..tostring( self[1] ).." o "..tostring( self[2] )..")" end,
|
||||
|
||||
__index = {
|
||||
|
||||
eval = function( self )
|
||||
--All compositions are of the form f^(n) o f,
|
||||
--whose value at a fixed point p is f^(n)(p)
|
||||
return self[1]:eval()
|
||||
end,
|
||||
|
||||
diff = function( self )
|
||||
--All compositions are of the form f^(n) o f,
|
||||
--whose derivatives are always ( f^(n+1) o f )
|
||||
return d( self[1] ) ^ D(0) * D(1)
|
||||
end,
|
||||
}},
|
||||
|
||||
add = {
|
||||
__add = __add,
|
||||
__mul = __mul,
|
||||
__pow = __pow,
|
||||
__call = __call,
|
||||
__tostring = function( self ) return tostring( self[1] ).." + "..tostring( self[2] ) end,
|
||||
|
||||
__index = {
|
||||
|
||||
name = "add",
|
||||
|
||||
eval = function( self )
|
||||
return self[1]:eval() + self[2]:eval()
|
||||
end,
|
||||
|
||||
diff = function( self )
|
||||
return d(self[1]) + d(self[2])
|
||||
end,
|
||||
}},
|
||||
|
||||
mul = {
|
||||
__add = __add,
|
||||
__mul = __mul,
|
||||
__pow = __pow,
|
||||
__call = __call,
|
||||
__tostring = function( self ) return tostring( self[1] ).." x "..tostring( self[2] ) end,
|
||||
|
||||
__index = {
|
||||
|
||||
eval = function( self )
|
||||
return self[1]:eval() * self[2]:eval()
|
||||
end,
|
||||
|
||||
diff = function( self )
|
||||
return d(self[1]) * self[2] + self[1] * d(self[2])
|
||||
end,
|
||||
}},
|
||||
|
||||
|
||||
}
|
||||
|
||||
op.New = function( nodeType, a, b )
|
||||
return setmetatable( { a, b }, op[nodeType] or error( "Node Type Not Recognized" ) )
|
||||
end
|
||||
|
||||
local a = D(1) ^ D(0)
|
||||
for i = 1, 5 do
|
||||
print( a )
|
||||
a = a:diff()
|
||||
end
|
||||
|
||||
return op
|
|
@ -0,0 +1,103 @@
|
|||
--Compute derivatives at the fixed point using Faa Di Bruno's formula.
|
||||
|
||||
local ORDER = 21
|
||||
|
||||
local binCoefs = {}
|
||||
|
||||
local function Choose( n, k )
|
||||
if k < 1 then return 1 end
|
||||
if n < 1 then return 0 end
|
||||
if k > n then return 0 end
|
||||
local idx = n * ORDER + k
|
||||
if binCoefs[idx] then return binCoefs[idx] end
|
||||
|
||||
local z = Choose( n - 1, k - 1) + Choose( n - 1, k )
|
||||
binCoefs[ idx ] = z
|
||||
return z
|
||||
end
|
||||
|
||||
for i = 13, 1, -1 do
|
||||
for j = 13, 1, -1 do Choose(i, j) end
|
||||
end
|
||||
|
||||
Choose = function( n, k )
|
||||
local c = binCoefs[ n * ORDER + k ] or ( ( k < 1 ) and 1 or 0 )
|
||||
return c
|
||||
end
|
||||
|
||||
local function Series( p )
|
||||
local d = { p, 1.0 / p } -- q[i] := f^(i) (p)
|
||||
local bellPolynomial = {}
|
||||
|
||||
--Generate incomplete Bell polynomials by recursive formula:
|
||||
--d[n+1] = - \sum_{k=1}^{n-1} d[k+1] * B(n,k) / p^n
|
||||
--B[n][k] = \sum_{i=1}^{n-k+1} Choose( n-1, i-1 ) * d[i] * B( n-i, k-1 )
|
||||
--sum_i=1^(n-k+1)
|
||||
|
||||
local function Bell( n, k )
|
||||
--Base cases.
|
||||
if n == 0 then
|
||||
return ( k == 0 ) and 1 or 0
|
||||
elseif k == 0 then
|
||||
return 0
|
||||
end
|
||||
|
||||
--Cached values.
|
||||
local idx = n * ORDER + k
|
||||
if bellPolynomial[idx] then return bellPolynomial[idx] end
|
||||
|
||||
--Sum.
|
||||
local b = 0
|
||||
for i = 1, n - k + 1 do
|
||||
local a = Choose( n - 1, i - 1 )
|
||||
a = a * d[i]
|
||||
a = a * Bell( n - i, k - 1 )
|
||||
b = b + a
|
||||
end
|
||||
bellPolynomial[idx] = b
|
||||
return b
|
||||
end
|
||||
|
||||
local NextDerivative = function()
|
||||
local n = #d
|
||||
local new = 0
|
||||
for k = 1, n - 1 do
|
||||
new = new + d[k + 1] * Bell(n, k)
|
||||
end
|
||||
new = -new / math.pow( p, n )
|
||||
d[n + 1] = new
|
||||
return new
|
||||
end
|
||||
|
||||
for i = 1, ORDER - 2 do NextDerivative() end
|
||||
|
||||
--Function that evaluates Taylor series.
|
||||
return {
|
||||
Interpolant = function( x )
|
||||
x = x - p
|
||||
local pow = 1
|
||||
local fact = 1
|
||||
local y = p
|
||||
for i = 1, ORDER do
|
||||
pow = pow * x
|
||||
fact = fact * i
|
||||
y = y + pow * d[i] / fact
|
||||
end
|
||||
return y
|
||||
end,
|
||||
|
||||
Derivative = function( x )
|
||||
x = x - p
|
||||
local pow = 1
|
||||
local fact = 1
|
||||
local y = 0
|
||||
for i = 1, ORDER do
|
||||
pow = pow * x
|
||||
fact = fact * i
|
||||
y = y + pow * d[i] / fact
|
||||
end
|
||||
end
|
||||
}
|
||||
end
|
||||
|
||||
return Series
|
|
@ -0,0 +1,35 @@
|
|||
--Returns a function which takes a sequence of polynomial coefficients and
|
||||
--returns two functions which evaluate the polynomial and its derivative, respectively
|
||||
return function( coefs )
|
||||
local fixedPoint = coefs[0] or error( "Must have constant coefficient!" )
|
||||
return function(x)
|
||||
|
||||
x = x - fixedPoint
|
||||
local y = fixedPoint
|
||||
local pow = 1
|
||||
local fact = 1
|
||||
for i = 1, #coefs do
|
||||
pow = pow * x
|
||||
fact = fact / i
|
||||
y = y + pow * fact * coefs[i]
|
||||
end
|
||||
return y
|
||||
end,
|
||||
|
||||
function(x)
|
||||
|
||||
x = x - fixedPoint
|
||||
local y = 0
|
||||
local pow = 1
|
||||
local fact = 1
|
||||
for i = 1, #coefs do
|
||||
y = y + pow * fact * coefs[i]
|
||||
pow = pow * x
|
||||
fact = fact / i
|
||||
end
|
||||
return y
|
||||
end
|
||||
|
||||
|
||||
|
||||
end
|
67
main.lua
67
main.lua
|
@ -7,41 +7,78 @@
|
|||
--get truncated taylor series expansion of f at p
|
||||
--plot to get some idea about values, convergence.
|
||||
|
||||
local RESOLUTION = 1000
|
||||
local EXTENT = 16
|
||||
|
||||
local FaaDiBruno = require( 'fdb' )
|
||||
local Ansatz = require( 'ansatz' )
|
||||
local Poly = require( 'interpolant' )
|
||||
|
||||
local a = 0.2
|
||||
local function PlotFunction( f )
|
||||
|
||||
local RESOLUTION = 1000
|
||||
|
||||
|
||||
local points = {}
|
||||
for n = 1, RESOLUTION do
|
||||
points[ 2 * n - 1 ] = n / RESOLUTION
|
||||
points[ 2 * n ] = f( n / RESOLUTION )
|
||||
points[ 2 * n - 1 ] = EXTENT * n / RESOLUTION
|
||||
points[ 2 * n ] = f( EXTENT * n / RESOLUTION )
|
||||
|
||||
--inverse
|
||||
--points[ 2 * RESOLUTION + 2 * n ] = points[ 2 * n - 1]
|
||||
--points[ 2 * RESOLUTION + 2 * n - 1] = points[ 2 * n ]
|
||||
end
|
||||
|
||||
local x, y = love.graphics.getDimensions()
|
||||
local tf = love.math.newTransform(
|
||||
0, love.graphics.getHeight(),
|
||||
0, love.graphics.getWidth(),
|
||||
-love.graphics.getHeight())
|
||||
x / EXTENT, y,-- / EXTENT,
|
||||
0, x / EXTENT,
|
||||
-y / EXTENT)
|
||||
local dtf = love.math.newTransform( 0, 0, 0, 1, 1 )
|
||||
|
||||
love.graphics.setColor( 1, 1, 1, 0.5 )
|
||||
love.graphics.setLineWidth( 0.003 )
|
||||
--love.graphics.setColor( 1, 1, 1, 0.5 )
|
||||
love.graphics.setLineWidth( 0.1 )
|
||||
love.graphics.setLineJoin( "miter" )
|
||||
love.graphics.setLineStyle( "smooth" )
|
||||
local draw = love.draw or function() end
|
||||
|
||||
love.draw = function()
|
||||
draw()
|
||||
love.graphics.replaceTransform( tf )
|
||||
love.graphics.push("transform")
|
||||
love.graphics.translate( 0, y )
|
||||
love.graphics.scale( x, -y )
|
||||
love.graphics.scale( 1 / EXTENT, 1 / EXTENT )
|
||||
|
||||
--love.graphics.scale( 1.0 / EXTENT, 1.0 / EXTENT )
|
||||
love.graphics.line( points )
|
||||
love.graphics.pop()
|
||||
|
||||
love.graphics.print( a )
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
love.update = function( dt )
|
||||
print( love.mouse.getPosition( ) )
|
||||
if love.keyboard.isScancodeDown("w") then
|
||||
a = a + 0.05
|
||||
love.graphics.setColor( a, 0, 0, a )
|
||||
love.draw = nil
|
||||
--PlotFunction( FaaDiBruno( a ) )
|
||||
--PlotFunction( function(x)return x end)
|
||||
end
|
||||
|
||||
if love.keyboard.isScancodeDown("s") then
|
||||
a = a - 0.05
|
||||
love.graphics.setColor( 1, 0, 0, 1 )
|
||||
love.draw = nil
|
||||
--[[local f = FaaDiBruno(a)
|
||||
PlotFunction( f.Interpolant )
|
||||
PlotFunction( f.Derivative )]]
|
||||
PlotFunction( function(x)return x end)
|
||||
local f, df = Poly({[0] = 1.5, 1 + a, 2 })
|
||||
PlotFunction( f )
|
||||
PlotFunction( df )
|
||||
end
|
||||
if love.keyboard.isScancodeDown("q") then EXTENT = EXTENT + 0.5 end
|
||||
if love.keyboard.isScancodeDown("e") then EXTENT = EXTENT * 0.99 end
|
||||
end
|
||||
|
||||
PlotFunction( function( x ) return x * x end )
|
||||
PlotFunction( function( x ) return x * x * x end )
|
||||
PlotFunction( math.sin )
|
||||
PlotFunction( function( x ) return math.exp( x ) - 1 end )
|
Loading…
Reference in New Issue